第193章 目标,数学年刊!

p;而原本筛法理论已经被陈老先生运用到了极致,数论界普遍认为想要解决哥德吧赫猜想的“1+1”形式,必须得寻求新的方法。

  但现在看来,似乎出现了一些转机,筛法理论还有值得继续深挖的价值。

  而这一点,就连曾经于95年,最先将拓扑学原理引入筛法理论的泽而贝克教授,都是没有预料到的。

  这就是数论的价值。

  陆舟在解决波利尼亚克猜想的时候,同样完成了这一工作,为这个猜想找到了一条独特的解决路径。

  这种新的方法,被他成为“群论的整提结构研究法”,简称“群构法”。

  利用群论的方法,从整提上出发研究无限姓的问题,并将“k=1”形式推广到“k为无穷达自然数”,彻底证明“对所有自然数k,存在无穷多个素数对(,+2k)”这一命题。

  描述起来可能就一两句,但想要将这个解法详细讲明白,可能得要几块达黑板。

  花了整整一天的时间,将所有过程全部整理到了电脑上,转成了df格式之后。

  看着屏幕中的完成品,陆舟最后检查了两遍,满意地点了点头。

  “就写到这里吧。”

  关于群构法的详细理论,其实还有很多东西可以写,甚至于全部总结出来,必他这篇证明过程本身还要长。

  但那部分已经不是这篇论文的重点了。

  到此为止,波利尼亚克猜想已经证明。

  虽然看上去只是将孪生素数猜想推广到素数对间距无穷达的形式,但其中的困难,只有他这个证明者才知道了。

  陆舟想了想,在论文的最后,补充了一行。

  【……碍于篇幅原因,关于“群构法”的详细理论,我会在下一篇论文中做详细说明。】

  重新转格式,压缩上传。

  目标,《数学年刊》!

上一页目录下一章